

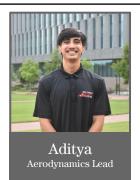
Preliminary Design Review

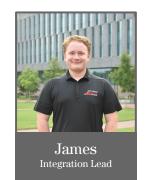
November 3, 2025

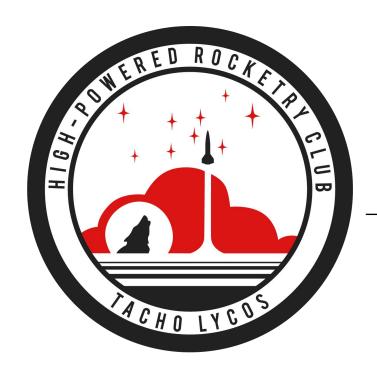
Presentation Overview

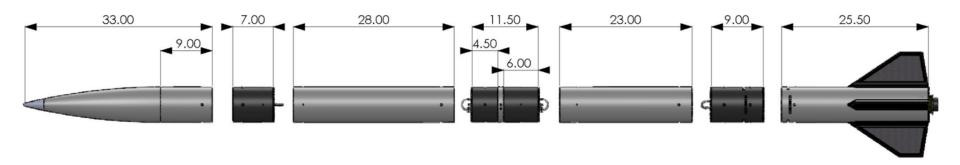
- Leading Launch Vehicle Design
- Leading Recovery Design
- Mission Performance Predictions
- Leading Payload Design
- Air Brakes Design
- Requirement Compliance
- Project Plan
- Questions

Team Introductions



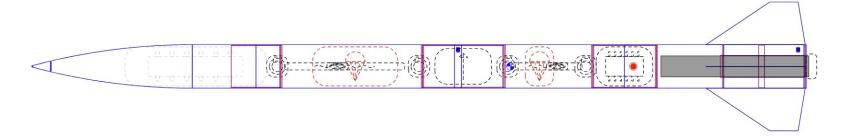






Leading Launch Vehicle Design

Vehicle Dimensions

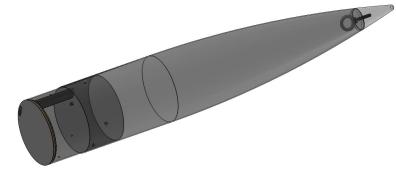

- 111.00-inch Vehicle length
- 6.12-inch Body outer diameter
- .058-inch Body wall thickness
- .068-inch Coupler wall thickness
- 36 lbf loaded

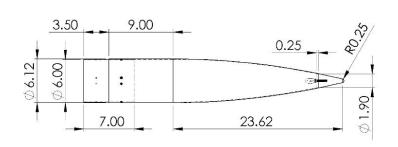
Vehicle Stability

Software	Center of Pressure	Center of Gravity	Stability Margin
OpenRocket	84.901 in.	67.54 in.	2.84 Calibers
RocketPy	84.803 in.	66.693 in.	2.934 Calibers

Vehicle Body Material

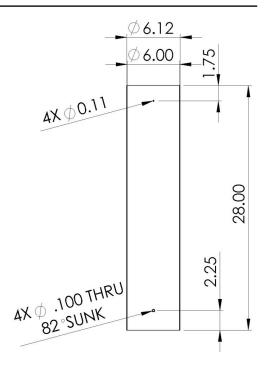
- Roll-wrapped S2 fiberglass cloth impregnated with US Composites 635 laminating epoxy
- High-strength, climate resistant, and RF transparent
- 16,500 psi experimental compressive strength



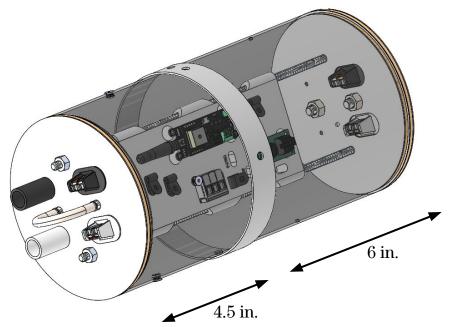

Nosecone / Payload Bay

Multiple layers of fiberglass sleeve with US Composites epoxy

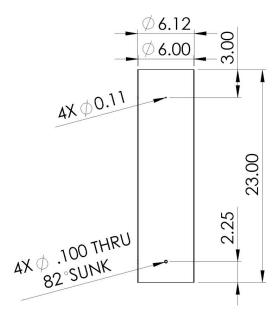
- Extended length full diameter for ample payload volume with 4:1 ratio nosecone
- Recovery attachment at nose cone tip with epoxied carbon fiber tube for shock cord guidance
- 3.5-inches of coupler engagement



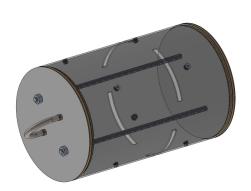
Main Parachute Bay

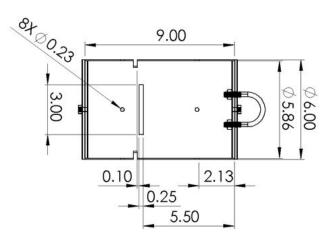

- Single section of roll-wrapped fiberglass
- Houses the main recovery assembly
- Connects to the aft end of the nose cone coupler
 - 4X 4-40 Nylon shear pins
- Connects to the forward end of the avionics bay
 - 4X 6-32 Stainless steel countersunk screws

Avionics Bay


- Contains all recovery electronics and energetics
- Extends 4.5 in. into main parachute bay
- Extends 6 in. into drogue parachute bay
- Stepped bulkheads

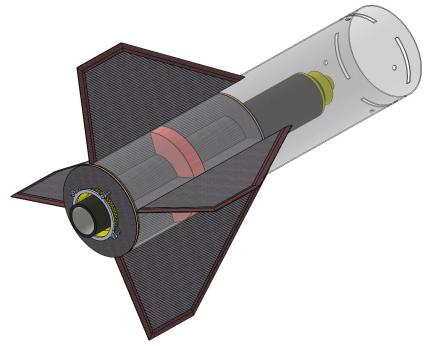
Drogue Parachute Bay


- Single section of roll-wrapped fiberglass
- Houses the drogue recovery assembly
- Connects to the aft end of the avionics bay
 - 4X 4-40 Nylon shear pins
- Connects to the forward end of the air brakes bay
 - 4X 6-32 Stainless steel countersunk screws

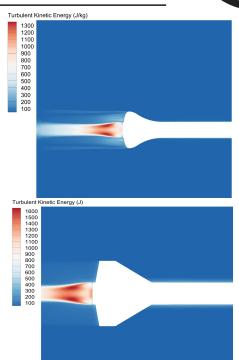


Air Brakes Bay

- Contains the air brakes assembly and aft drogue recovery attachment point
- Extends 4.5 in. into drogue parachute bay
- Extends 4.5 in. into fin can
- Slots cut for air brakes fins



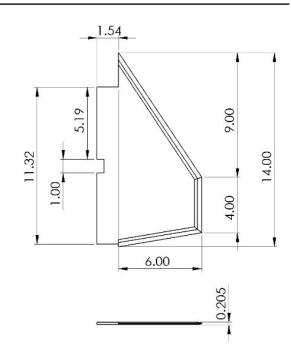
Fin Can


- Single section of roll-wrapped fiberglass
- Slots cut for the air brakes fins
- Epoxied in motor mount, fins, centering rings, and thrust plate assembly
- 3D Printed PLA centering ring with slots matching fins

Fin design

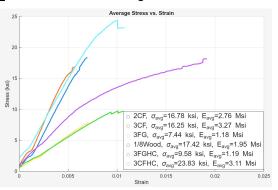
TO LYCAS

- Preliminary design- Elliptical trailing edge, Curved delta leading edge
 - Superior Drag Reduction
 - Drag per fin = 2.248 lbf at 619 ft/s
 - Little velocity loss across the trailing edge
 - Overall Lower turbulence
 - Complex manufacturing
- Leading design Swept Trapezoidal
 - Drag per fin = 5.845 lbf at 619 ft/s
 - Similar velocity loss across trailing edge
 - Higher turbulence induced
 - Simple manufacturing



Aft-Swept Trapezoidal Shape

- Tip Chord: 4.00 in
- Root Chord: 14.00 in
- Height: 6.00 in
- Sweep Length: 2.50 in
- Fin Tab Depth: 1.54 in
- Fin Tab Length: 11.32 in
- Fin Thickness: 0.205 in

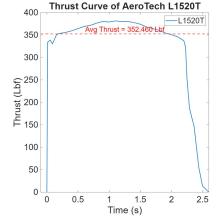


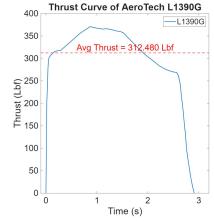
Vehicle Plate Material

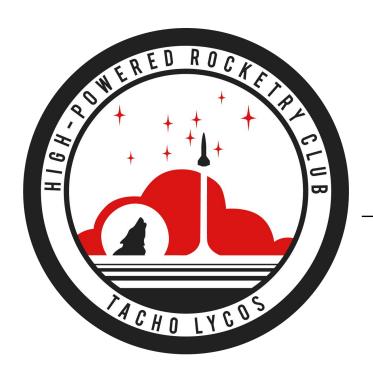
- 0.125-inch Honeycomb Nomex core material
- Multiple layers of S2 8.9 oz/yd² or 3K 5.7 oz/yd² carbon fiber cloth with US Composites laminating epoxy
- Wet layup with vacuum bag compression
- 50-55% fiber volume fraction experimentally

Vehicle Plate Material (contd.)

Component			Layup Sequence		
Avionics & Nose Cone Bulkheads	4 x [0/90] FG	Honeycomb Nomex Core	1 x [0/90] FG	Honeycomb Nomex Core	4 x [0/90] FG
Air Brakes Bulkheads	3 x [0/90] CF	Honeycomb Nomex Core	1 x [0/90] CF	Honeycomb Nomex Core	3 x [0/90] CF
Forward Centering Ring	3 x [0/90] CF	Honeycomb Nomex Core	3 x [0/90] CF	NA	
Thrust Plate	3 x [0/90] CF	Honeycomb Nomex Core	1 x [0/90] CF	Honeycomb Nomex Core	3 x [0/90] CF
Fins (symmetric)	1 x [0/90] CF	1 x [-45/+45] CF	1 x [0/90] CF	1 x [-45/+45] CF	Honeycomb Nomex Core


NC STATE UNIVERSITY



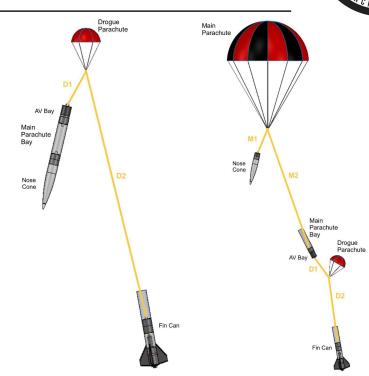


- The chosen motor is the AeroTech L1390G
- Its burn time, altitude, and thrust curve were driving factors
- For a given target Apogee of 4600 ft, the motor will carry the vehicle to 5435 ft.

Motor	Rail Exit Velocity	Maximum Acceleration	Thrust to Weight
L1390G	78.5 ft/s	9.56 G	8.58:1 Lbs
L1520T	83.4 ft/s	10 G	9.59:1 Lbs

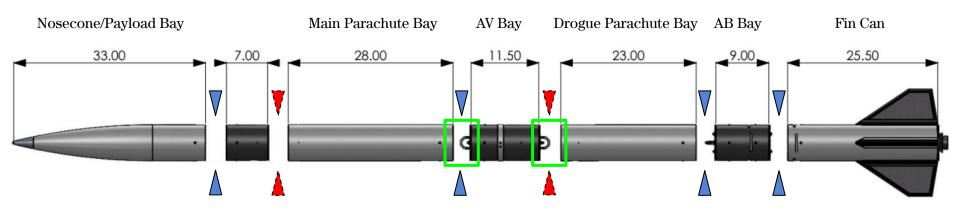
Leading Recovery Design

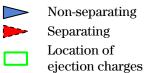
Recovery Events


Drogue Deployment

- Apogee
- Secondary 1 second after primary

Main Deployment


- 550 ft.
- Secondary at 500 ft.


All sections connected via shock cord with a minimum of 10ft. of separation between sections

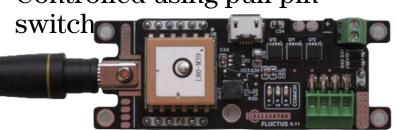
Separation Points

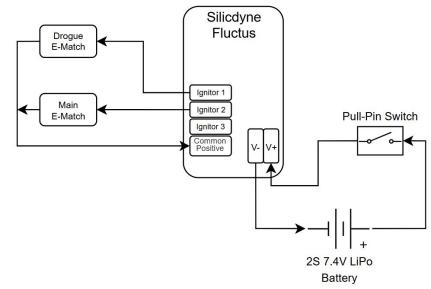
Altimeters

Altimeter	Si	ze	Power	Cost	Owned	Se	ensors		Featur	es
	Length	Width				Barometer	Accelerometer	GPS	Tele	Radio
Silicdyne Fluctus	4.30"	1.00"	3.7V - 10V	\$400	✓	✓	✓	✓	✓	√
Eggtimer Quasar	5.50"	1.09"	7.4V	\$100	√	✓		✓	✓	✓
Altus Metrum EasyMini	1.50"	0.80"	3.7V - 12V	\$80	✓	✓				
PerfectFlite StratologgerCF	2.00"	0.84"	4V - 16V 9V Nominal	\$70	✓	✓				

NC STATE UNIVERSITY

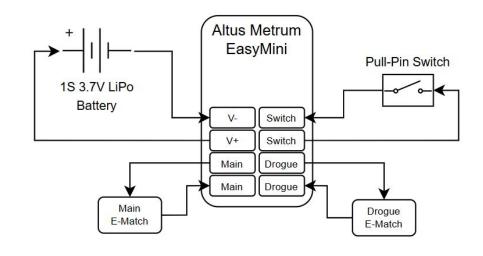
Trackers


Tracker	Si	ze	Transmitter Frequency	Range	Cost	Owned
	Length	Width				
Silicdyne Fluctus	4.30"	1.00"	900 MHz	6.00 miles	\$400	✓
Eggtimer Quasar	5.50"	1.09"	900 MHz	6.00 miles	\$100	✓
Eggfinder Mini	7.00"	3.25"	900 MHz	1.50 miles	\$75	✓


Leading Avionics

Primary Altimeter + GPS Tracker

- Silicdyne Fluctus
- Powered by a 7.4V 800 mAh LiPo battery
- Controlled using pull-pin


Leading Avionics

Secondary Altimeter

- Altus Metrum EasyMini
- Powered by a 3.7V 500 mAh LiPo battery
- Controlled using pull-pin switch

Drogue Parachute

Parachute	Drag Coefficient	Descent Velocity	Descent Time: Apogee to Main Deployment	Max Drift Distance: Apogee to Main Deployment	Owned
15" Elliptical	1.5	120.27 fps	33.67 s	987.75 ft	√
18" Elliptical	1.5	100.23 fps	40.41 s	1185.30 ft	√
24" Elliptical	1.5	75.17 fps	53.88 s	1580.40 ft	√
30" Elliptical	1.5	60.14 fps	67.35 s	1975.50 ft	2.

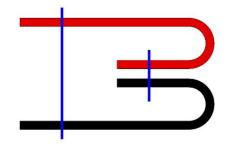
Main Parachute

Parachute	Drag Coefficient	Descent Velocity	Descent Time: from Main Deployment	Kinetic Energy	Max Drift Distance: Apogee to Main Deployment	Owned
Fruity Chutes Iris Ultra 72" Compact	2.2	21.02 fps	26.17 s	99.53 ft-lbf	767.59 ft	
Fruity Chutes Iris Ultra 84" Compact	2.2	17.73 fps	31.01 s	70.86 ft-lbf	909.72 ft	✓
Fruity Chutes Iris Ultra 96" Compact	2.2	15.76 fps	34.89 s	55.99 ft-lbf	1023.45 ft	✓
Fruity Chutes Iris Ultra 120" Compact	2.2	12.61 fps	43.61 s	35.83 ft-lbf	1279.32 ft	✓

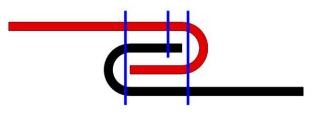
NC STATE UNIVERSITY

Parachute Materials

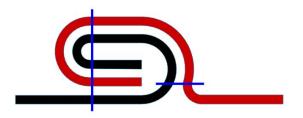
Parachute Material: Ripstop Nylon


Uncalendered	Calendered
Softer, more flexible	Increases stiffness, maintains flexibility
More porous, breathable	Reduced porosity
Less resistant to abrasion	High resistance to abrasion
Tensile strength: 14.7 lbf/in	Tensile strength: 24.7 lbf/in


Thread Material


Cotton	Bonded Nylon
Easy to handle	Higher tensile strength
Inelastic	Elasticity
Degrades quickly	Durable

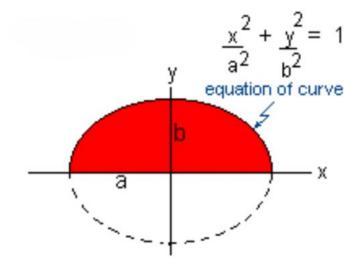
Parachute Fabrication



Flat-Fell Seam

Flat-Fell Seam Variation

Shroud Lines


UHMWPE	Kevlar
High strength-to-weight ratio	Abrasion and heat resistant
High tensile strength	Lower tensile strength
Tangles easily	Greater durability
Can twist/distort under loading	Easier to handle, doesn't tangle as easily

Parachute Design

- Elliptical shape
- b/a = 0.7
- Reduces required material while maintaining performance
 - Weight and packing volume

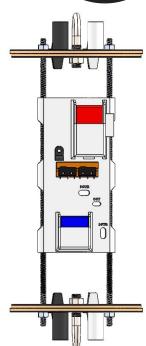
Leading Parachute Configuration

Drogue Parachute

- 18 in. custom elliptical parachute
- Protected by Nomex blanket

Main Parachute

- Fruity Chutes Iris Ultra 96 in. Compact
- Protected by Fruity Chutes deployment bag

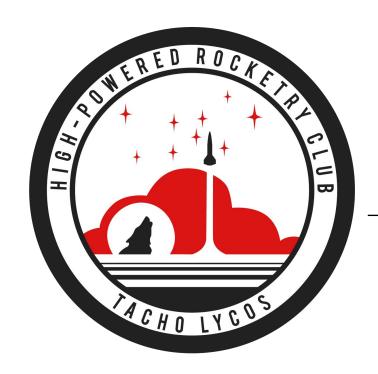

Parameter	Value
Drogue Descent Velocity	100.15 fps
Main Descent Velocity	15.76 fps
Max Kinetic Energy	55.99 ft-lbf
Descent Time	75.33 s
Max Drift Distance	2209.71 ft

AV Sled Design

THERED ROCALLY AND A STATE OF THE STATE OF T

- 3D printed PLA sled
- All electronics mounted directly to sled
- Built-in slots for batteries, in addition to Velcro
- Wire clamps for cable management
- In-line WAGO connectors on each bulkhead
- Color-coded wires and charge wells

Shock Cord Selection

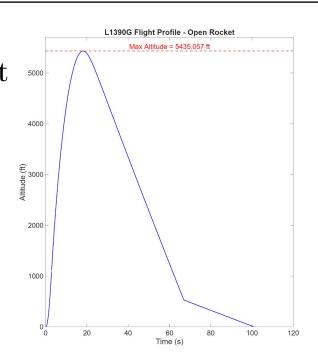


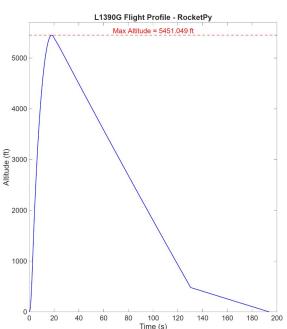
Parachute opening force

• Parachute inflation time: $t = \frac{nD}{v_d} = \frac{4 \cdot 8 ft}{100.15 fps} = 0.3195 sec$

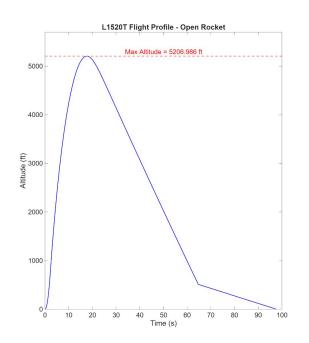
• Opening shock force:
$$F_{shock} = \frac{m\Delta v}{t} = \frac{31.63 \ lbm \cdot 84.39 \ fps}{32.2 \ ft/s^2 \cdot 0.3195 \ sec} = 259.42 \ lbf$$

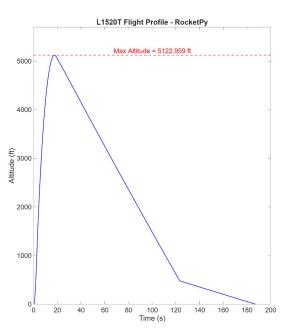
- 5/8 in. Kevlar shock cord strength: 6600 lbf
- Shock cord factor of safety: 25.44



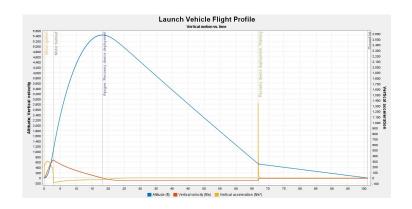

Mission Performance Predictions

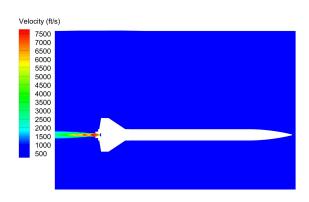
- Flight profiles
 between OpenRocket
 and RocketPy show
 an Apogee of 5435 ±
 20 ft.
- Declared Apogee is 4600 ft. with Air Brakes deployment



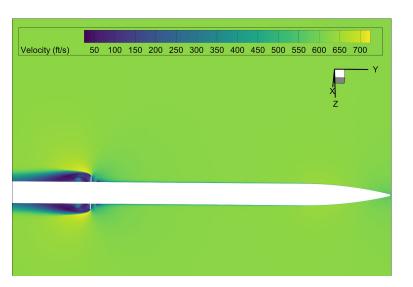


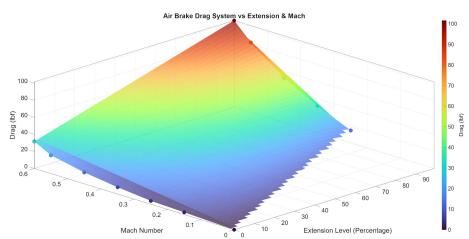
- An Apogee of 5206 ± 100 ft. is projected
- The vehicle will be able to reach the declared apogee with Air Brakes deployment



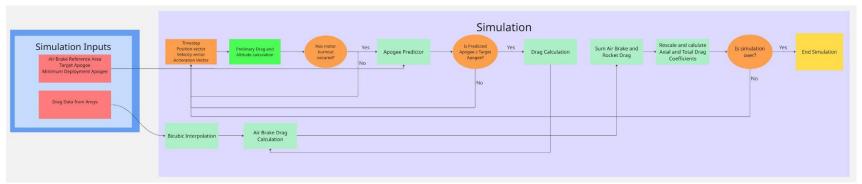


- All simulations were conducted with
 - 144 in Launch Rail
 - 5 mph average wind speed
 - 5 deg, cant

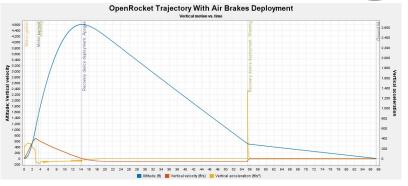


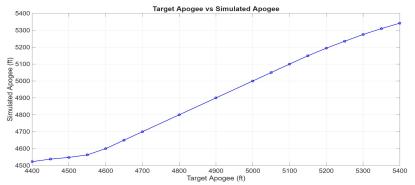

Declared Apogee

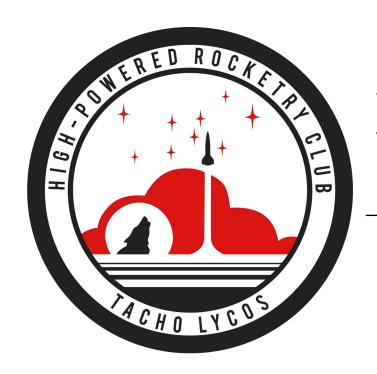
 Declared Apogee is 4600 ft with Air Brakes deployment


Drag force per Mach vs
 Deployment level was
 simulated for a drag profile

OpenRocket Plugin


- OpenRocket supports external augmentation software
- Drag profile is used in conjunction with custom software to influence OpenRocket
- Air Brakes control system is translated to OpenRocket for trajectory analysis




Target Apogee

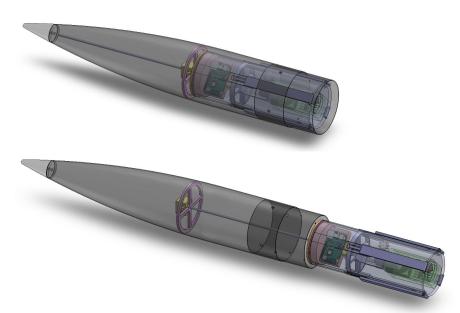
THE NED ROCKE

- Trajectory for the declared apogee is generated
 - Target Apogee set is 4600 ft.
 - Simulated Apogee is 4600 ft.
- With the use of the plugin, Target Apogee equals Simulated Apogee from 4600 ft to 5200 ft
- Further refinement will be employed for accuracy

Leading Payload Design

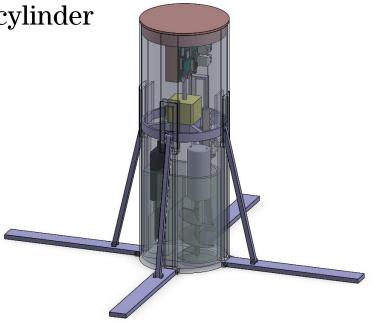
Payload Objective and Requirements

- Collect 50 milliliters of soil within 15 minutes of the rocket landing
- Test the collected soil for pH, electrical conductivity, and Nitrate-Nitrogen content
- Save this data with timestamps to be presented to NASA
- Create an atmosphere-isolated housing for four STEMnauts



- Create a self-righting ground-deploying lander
- Use an auger to drill into and collect soil
- Test soil with an integrated sensor

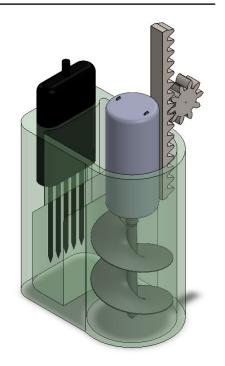
Payload Design: Deployment


- Housed in the nosecone
- Use a lead screw to push the lander out
- Guide lander with rails
- Use an electronic latch to release the lander when it is fully deployed

Payload Design: Lander


- 5-inch diameter, 14-inch long cylinder
- Housed in the nosecone
- Deployed after landing

Payload Design: Legs

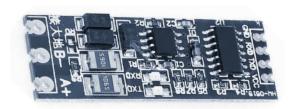

- Four deployable legs
- Start folded, extend using struts to a moving collar
- This will cause the payload to self-right

Payload Design: Drill

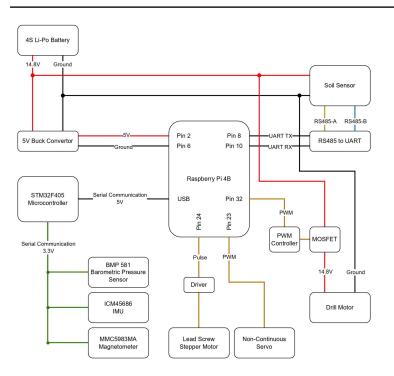
- Comprehensive mechanism to collect, store, and test soil
- Use a rotating and extending auger to collect soil
- Use passive mechanisms to funnel the dirt into a desired container
- Position sensor to be covered by soil

Payload Design: Soil Sensor

• Soil Probe

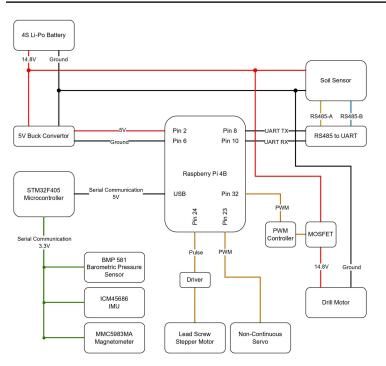

- Temperature
- Moisture Content
- pH
- Electrical Conductivity
- Nitrogen Levels
- Phosphorus Levels
- Potassium Levels

Payload Design: Soil Sensor


- 7-in-1 Sensor
 - Requires 12-24V of power
 - Modbus RTU communication protocol
 - RS485 communication standard
- RS-485 to UART converter

Payload Electrical Schematics

Sensor Array

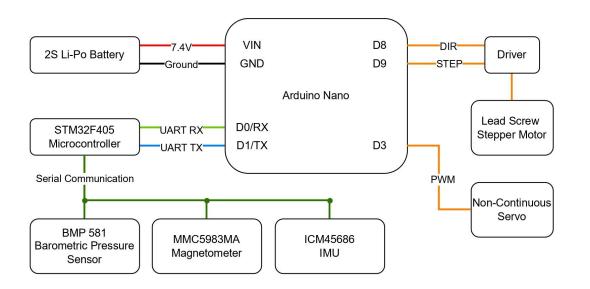

- BMP 581
 - Pressure Sensor
- ICM45686
 - Inertial Measurement Unit (IMU)
- MMC5983MA
 - Magnetometer
- STM32F405
 - Microcontroller

On-Board Computer

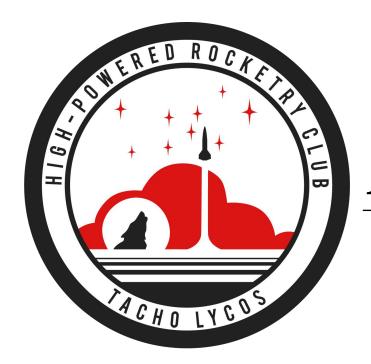
• Raspberry Pi 4b

Payload Electrical Schematics

Motors


- Planetary gear motor
 - PWM controller connected to MOSFET
- Non-continuous servo
 - Rack and Pinion
- Stepper motor
 - Pulse signal to motor driver

Power


• 4S LiPo Battery

Payload Electrical Schematics

- On-Board Computer
 - o Arduino Nano
- Similar sensor array
 - UART (Communication)
- Motors
 - Stepper motor
 - o Non-continuous servo
- Power
 - o 2S LiPo (7.4V)

Air Brakes Design

Leading Design

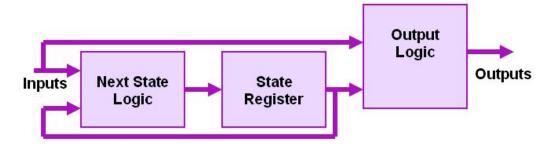
- Planetary gear design
 - Central gear actuates 4 gears simultaneously
 - Helical gears for reduced friction
- 4 fins to maximize area
 - 23.06 in^2 max area

Manufacturing

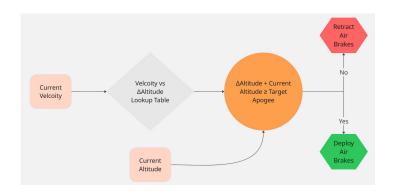
- All structural parts to be 3D printed
 - Material Choice PETG
- Electronics
 - Soldered for direct connections
 - Wiring and connectors for ease of assembly

Hardware

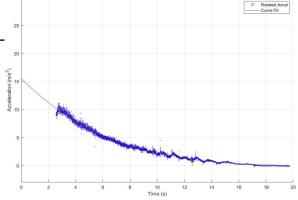
- Raspberry Pi 5
- IMU
- Barometric pressure sensor
- Servo
- Buck Converter
- Pullpin
- 4S Li-Po Battery

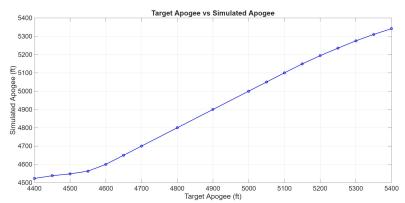


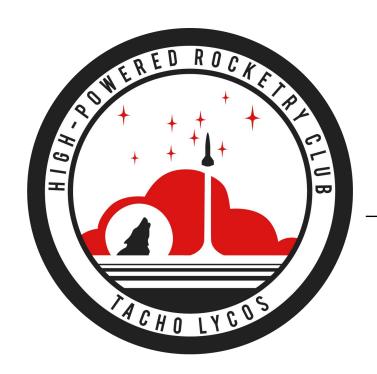
Software


- All programming is done in Python
 - Object Oriented Programming
 - Access to reliable libraries
- Supports multi-threading
 - Raspberry Pi 5 has 4 cores
 - Faster compute
- Programmed as a Finite State Machine

Control system


- Bang-bang control scheme
 - Binary decisions
- Takes in and keeps track of
 - Position Vector
 - Velocity Vector
 - Acceleration Vector




Apogee Prediction

- Takes in Z-axis acceleration and altitude from IMU
- Acceleration data fits to a curve
 - $A(1-B*t)^4$
- Double integration yields current altitude
- Back Tested from prior flights
- Quick and accurate within ~4%.
 - ~2 seconds 32 ft deviation
 - ~3.5 seconds 16.4 ft deviation

Requirement Compliance

Requirements Compliance

Covers both NASA and Team-Derived requirements

Tool Used: Requirement Verification Matrices (RVMs)

Purpose:

- Ensure all project requirements are satisfied
- Maintain traceability between owners, design elements, and verification activities

Lifecycle: RVMs are maintained throughout the project timeline

Verification Level	Description	Key
Verified	All verification success criteria has been met.	٧
Partially Verified	Some verification success criteria has been met, some criteria may still be in progress.	PV
In Progress	None of the verification success criteria has been met, but the verification process has begun.	ΙΡ
Not Verified	None of the verification success criteria has been met and not meaningful progress has been made towards verification yet.	NV

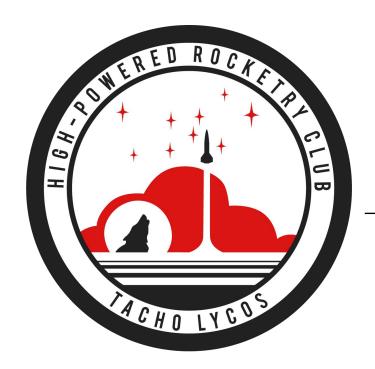
Requirement Verification Matrices (RVMs)

ID SHALL Statement Justification Planned Action Verification Method Verification Success Criteria Status Performing Subsystem Results

Inspired Heavily by NASA System Engineering Handbook (2016)

Key Columns:

- ID / SHALL Statement: Identifies and describes each requirement
- Planned Action: Outlines approach for verification
- Verification Method: Defines how verification is performed
- Success Criteria: Conditions for requirement verification
- Status: Current verification state
- Performing Subsystem: Responsible subsystem(s)
- Results: Links to objective evidence of verification
- Justification: Explains rationale and necessity (for Team Derived Requirements)



Capture project-specific needs beyond NASA requirements
Created collaboratively by subsystem leads and integration lead
Justification Column:

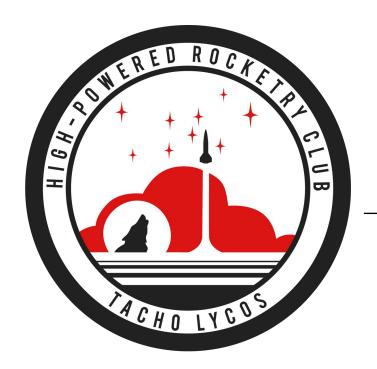
• Documents rationale and necessity of each requirement Follows same RVM structure and process as NASA requirements Features Functional, Design, Environmental, and Safety

Requirement Type	Verified	Partially Verified	In Progress	Not Verified
NASA	32.86 %	6.85 %	45.21 %	15.07 %
Requirements	(24)	(5)	(33)	(11)
Team Derived	8.86 %	6.33 %	32.91 %	51.90 %
Requirements	(7)	(5)	(26)	(41)

Project Plan

Competition Development Timeline

TACHO LYCOS	2025	-26	Stu	ıde	ent	L	au	ın	ch	D	ev	/e	lo	pn	ne	nt	t C	ia:	nt	t C	ha	ar	t																							
IACHU LTCUS					Au	g			Sej	р	П			Oct		П		No	v	П		- 0	Dec				Jai	n	П		Feb		Τ		Mai	r	Т		Α	pr		Т		May	,]
Task Name	Task Number	Start Week	End Week	MOT	MOZ	NO3	NOA.	NOS.	MOE .	NOT .	MOS .	NOS	MIO	WII.	NIZ.	MI3	MIA	WIS	Wife .	MIT.	N18 1	NIO.	MZO .	WZI.	WZZ.	WZ3	NZA.	WES.	WZ6	WZI.	MZS W	2º W	10 N	ST W	32 4	133 1	34 1	75 W	36 4	37 4	38 W	89 M	o no	1 No	A WA	ł
Brainstorming	1	W01	W06	1	1	1	1	1	1	П	П		П		Т	П			П		Т	П		П	П		П			П		Т		Т			Т	Τ		Т	Т	Т	П	Τ	\top]
Vehicle Design	2	W01	W08	2	2	2	2	2	2	2	2																																			
Payload Design	3	W01	W08	3	3	3	3	3	3	3	3																																			
Airbrakes Design	4	W01	W08	4	4	4	4	4	4	4	4																																			
Subscale Parts Ordering	5	W07	W07							5																																				
Subscale Vehicle Manufacturing	6	W07	W11					П		6	6	6	6	6	П		П					П												Т							Т		П			
Subscale Parachute Manufacturing	7	W09	W10				Т	П	Т	П		7	7		Т	П	П	П	П			П		П	П		П				П	Т		Т			T	Т			Т	Т	Т		T	٦
Subscale Recovery System Testing	8	W12	W12				Т	П	Т	П		П	П		8	П	П		П		Т	П		П	П									Т			Т	T				Т	Г			٦
Subscale Painting	9	W14	W15				T	П	Т	\neg	\Box		П		П		9	9	П			Т		П									T	Т			T	T					Т		T	٦
Subscale Launch	10	W13	W13				П	П	Т	П	Т		П			10	П		П			Т		П								Т		Т			T	T					Т			٦
Full-scale Parts Ordering	11	W14	W15				T	П	П	\neg					П		11	11	П			П										Т		Т				T					Т		T	٦
Payload Parts Ordering	12	W10	W15				T	П	T	\neg			12	12	12	12	12	12	П			Т											T	Т				T					Т			٦
Full-Scale Vehicle Manufacturing	13	W15	W25			1	T	П	T	T	T		П		Т	П	П	13	13	13	13	13	13	13	13	13	13	13			П	T	T	Т			T	T		T	Т	T	Т			٦
Payload Manufacturing	14	W12	W25	П		1	T	П	T	T	T		П		14	14	14	14	14	14	14	14	14	14	14	14	14	14		T	П	T	T	Т	T	T	T	T		T	Т	Т	Т	T		٦
Full-scale Parachute Manufacturing	15	W24	W25				T	П	Т	\neg	\neg		П		П	П	П		П		Т	П	П	П	П		15	15						Т				T					Т			٦
Full-scale Component Testing	16	W23	W25					П	Т				П		П	П	П		П			П		\neg		16	16	16										T					П			٦
Payload Testing	17	W26	W27				Т	П	П	П			П		П	П	П		П			П		П	П				17	17		Т		Т				T					Г		,	٦
Recovery System Testing	18	W27	W27				Т	П	П	П			П		П	П			П			П		П						18				Т			Т	T					Г			٦
Full-scale Painting	19	W27	W27																											19																
Vehicle Launch Window	20	W28	W28						T						T																20												Т			
Payload Launch Window	21	W28	W28				T	T	T	\neg			П		T	T			\Box			T			T						21			Τ						T			Т			٦
Competition Launch	22	W39	W39																																						2	2				


Budget Timeline

2025-26 Student Launch Budget Gantt Chart

IACHU LTCUS					Aug	g			Sep		Т	100	0	ct		Т	N	ov	П			Dec		Т		Jan		П	F	eb			Ma	ar	Т		4	\pr		Т		May	,
Task Name	Task Number	Start Week	End Week	MOT.	MOZ ,	NO3 1	NOA 1	NOS 1	NO6 4	101 Y	108 A	109	410 A	27 14	12 MI	W12	WIS	WI6	MIT.	NIS 1	NTO V	M20 1	NZI V	122 W	13 W	TO WY	5 112	WY?	W28	W29	1130	Mai	M32	M33	N3ª	N35 1	136	N37 1	138 1	139 14	No Ma	, wa	AL WAS
E Council S25-F25	1	W01	W08	1	1	1	1	1	1	1	1	T	Т							T	T			Т	Т	Т								Т	T		Т	T	T				
Student Government S25-F25	2	W01	W15	2	2	2	2	2	2	2	2	2	2	2	2	2 2	2							Т	Т	Т	Т									Т							
E Council S25-F26	3	W13	W42			Т	Т	Т		Т			Т	Т		3 3	3	3	3	3	3	3	3	3	3	3	3 3	3 3	3	3	3	3	3	3	3	3	3	3	3	3	3 :	3	3 3
Student Government S25-F26	4	W13	W42	П			T				Т					1 4	4	4	4	4	4	4	4	4	4	4	4 4	1 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 .	4 4
Space Grant 2025-2026	5	W15	W42								Т			Т			5	5	5	5	5	5	5	5	5	5 !	5 5	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 !	5 5
EYE Funding	6	W27	W27	П			T				Т			Т	T		П					T	T	Т		Т		6			П					Т	Т		Т				T
ETF Funding	7	W27	W27		T		T	T		1	T		T	1		T				T	1	1	T	1	1	T	T	7				П	T	1	T	T	T	T	T				
Sponsorships	8	W05	W42					8	8	8	8	8	8	8	8 8	3 8	8	8	8	8	8	8	8	8	8	8 8	8 8	3 8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8 8

Questions?