Milestone Review Flysheet 2020-2021

Institution North Carolina State University

Vehicle Properties		
Total Length (in)	106.25	
Diameter (in)	6.17	
Gross Lift Off Weigh (lb)	45.4	
Airframe Material(s)	G12 Fiberglass	
Fin Material and Thickness (in)	Aircraft Birch Plywood, 0.25	
Coupler Length(s)/Shoulder Length(s) (in)	All 6 inches	

Motor Properties		
Motor Brand/Designation	Aerotech L1520T-PS	
Max/Average Thrust (lb)	396.875/352.47	
Total Impulse (lbf-s)	835.41	
Mass Before/After Burn (oz)	128.79/63.39	
Liftoff Thrust (N)	1545.4	
Motor Retention Method	Retainer screw, engine block, centering rings	

Stability Analy	ysis
Center of Pressure (in. from nose)	78.29
Center of Gravity (in. from nose)	64.48
Static Stability Margin (on pad)	2.2
Static Stability Margin (at rail exit)	2.38
Thrust-to-Weight Ratio	7.94
Rail Size/Type and Length (in)	1515 - 144 in
Rail Exit Velocity (ft/s)	73.75

Ascent Analysis		
Maximum Velocity (ft/s)	548.66	
Maximum Mach Number	0.488	
Maximum Acceleration (ft/s^2)	542.56	
Target Apogee (ft)	4473	
Predicted Apogee (From Sim.) (ft)	4473	

Recovery System Properties - Overall	
Total Descent Time (s)	84.7
Total Drift in 20 mph winds (ft)	2484.5

Recovery System Properties - Energetics			
Ejection System Energetics (ex.	Black Powder)	4f Black Powder	
Energetics Mass - Drogue Chute	Primary	1	
(grams)	Backup	1.5	
Energetics Mass - Main Chute	Primary	3.2	
(grams)	Backup	3.7	
Energetics Mass - Other (grams)	Primary	N/A	
- If Applicable	Backup	N/A	

Recovery Sy	/stem Prope	rties - Recovery Electronics	
Primary Altimeter Make	/Model	PerfectFlite Stratologger CF	
Secondary Altimeter Mak	ce/Model	PerfectFlite Stratologger CF	
Other Altimeters (if app	licable)	N/A	
Rocket Locator (Make/	Model)	Eggfinder GPS TX/RX	
Additional Locators (if ap	plicable)	BRB900 TX/RX	
Transmitting Frequencies (all payload)	- vehicle and	433 MHz, 900 MHz	
Describe Redundancy Plan (batteries, switches, etc.)	Fully independent with two altimeters having separate black powder charges, switches, batteries, and E-matches		
Pad Stay Time (Launch Configuration)	2.9 hr		

	Recovery S	System Prop	erties - Drog	ue Parachute
Ma	nufacturer/Mo	del	Fruity Chutes 18-inch Classic Elliptical	
Size	or Diameter (in	or ft)	18 in	
Main Altir	neter Deployme	ent Setting	Apogee	
Backup Alti	meter Deploym	ent Setting	Apogee + 1 second	
Velocit	y at Deploymer	nt (ft/s)		0
Ter	minal Velocity (1	ft/s)	117	
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		5/8-in Tubular Kevlar		
Recovery Harness Length (ft)		40		
Harness/Airframe Interfaces Quick l		nks connecting	a bowline knot to a U-bolt	
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft- Ibs)	3617.9	2287.6	2839	

Recovery System Properties - Main Parachute				
Ma	nufacturer/Mo	del	Fruity Chutes 120-inch Iris UltraCompact	
Size	or Diameter (in	or ft)	120 in	
Main Altime	eter Deploymen	t Setting (ft)	675	
Backup Altim	eter Deployme	nt Setting (ft)		650
Velocit	y at Deploymer	nt (ft/s)		117
Ter	minal Velocity (1	ft/s)	12.6	
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Keylar strap)		5/8-in Tubular Kevlar		
Recovery Harness Length (ft)			40	
Harness/Airfra	me Interfaces Quick		nks connecting	a bowline knot to a U-bolt
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft- lbs)	18	26.6	33.1	N/A

Milestone Review Flysheet 2020-2021

Institution	North Carolina State University	Milestone	PDR

Payload
Overview
The payload, LOPSIDED, is a lander with four legs that is contained within the payload bay with its top facing the aft end of the bay. It is retained by an

Payload 1 (official payload)	electronic rotary latch and nylon shear pins. At apogee, the latch unlocks, leaving just the shear pins retaining LOPSIDED. At 675 ft AGL, the main parachute deploys, pulling the top of LOPSIDED, breaking the shear pins, and pulling LOPSIDED out of the payload bay. At 500 ft AGL, an ARRD separates LOPSIDED from the main parachute recovery harness. LOPSIDED then descends under a furled parachute until 200 ft AGL, when a Jolly Logic ChuteRelease allows the payload parachute to open fully. After landing, the chute is released by two electronic rotary latches. Two solenoid latches will unlock, allowing LOPSIDED to self-level. Then, the onboard cameras for the Planetary Observation System will capture an image and transmit it to the team using Transmitter 3 described below.
	Overview
Payload 2 (non- scored payload)	N/A
	Test Plans, Status, and Results
Ejection Charge Tests	In order to ensure that the altimeters used for ejection charges onboard the rocket are functioning properly, altimeters will be placed in a vacuum chamber and will be connected to a "drogue" and "main" circuit, each with an LED. If the LED illuminates at the correct pressure, then the altimeters will be deemed worthy for flight. Black powder ejection testing will be performed to confirm the calculations presented in the PDR document. The calculated amount of black powder will be manually ignited within

Vehicle

Demonstration

Flights

Sub-scale Test

Flights

The vehicle demonstration flight is scheduled for February 20, 2021. This flight will validate all launch vehicle systems and provide mission confidence prior to the FRR milestone. This flight is designed to satisfy handbook requirement NASA 2.18.1.

the launch vehicle in its flight configuration to confirm proper separation. If the calculated black powder charge fails to produce proper separation, the charge size will be increased and the test will be repeated until proper separation is achieved.

The subscale test flight is scheduled for November 21, 2020. During this test, launch vehicle systems will be evaluated and any failures will be analyzed to prevent future

occurances. The launch will also validate the recovery system and altimeter components. The subscale payload will consist of one camera that will be included in the final

payload, and one accelerometer. These are included to test the functionality of these components in the intense environment of flight onboard the launch vehicle.

Payload Demonstration Flights

The payload demonstration flight will be coincident with the vehicle demonstration flight on February 20, 2021. This flight will validate the payload retention and deployment systems, along with payload functionality after deployment. This will satisfy handbook requirement NASA 2.18.2.

Milestone Review Flysheet 2020-2021

Institution North Carolina State University Milestone PDR

Transmitter #1				
Location of transmitter:	AV Bay			
Purpose of transmitter:	Launch Vehicle Tracker			
Brand	Eggtimer Rocketry	RF Output Power (mW)	100 mW	
Model	Eggfinder GPS Tracking System	Specific Frequency used by team (MHz)	921 MHz	
Handshake or frequency hopping? (explain)	Fixed frequency, ID 8			
Distance to closest e-match or altimeter (in)	1			
Description of shielding plan:	Aluminium foil sheet will be mounted to the AV sled between the tracker and recovery electronics			

Location of transmitter:	Payload				
Purpose of transmitter:	Payload Tracker				
Brand	BigRedBee	RF Output Power (mW)	250mW		
Model	BRB900	Specific Frequency used by team (MHz)	900 MHz		
Handshake or frequency hopping? (explain)	Fixed frequency				
Distance to closest e-match or altimeter (in)	1				
Description of shielding plan:	Aluminum foil sheet placed between the altimeter and the tracker section inside the payload				
	Transmitter #3				
		- 1 1			

Transmitter #3				
Location of transmitter:	Payload			
Purpose of transmitter:	Image Transmission			
Brand	Adafruit	RF Output Power (mW)	100 mW	
Model	RFM69HCW	Specific Frequency used by team (MHz)	433 MHz	
Handshake or frequency hopping? (explain)	Handshake; to ensure transmission is only received by the team			
Distance to closest e-match or altimeter (in)	>1			
Description of shielding plan:	Aluminum foil will be placed between the transmitter and other payload electronics			

Transmitter #4				
Location of transmitter:				
Purpose of transmitter:				
Brand	RF Output Power (mW)			
Model	Specific Frequency used by team (MHz)			
Handshake or frequency hopping? (explain)				
Distance to closest e-match or altimeter (in)				
Description of shielding plan:				
<u> </u>				

Milestone Review Flysheet 2020-2021

Institution	North Carolina State University	Milestone	PDR

Transmitter #5				
Location of transmitter:				
Purpose of transmitter:				
Brand	RF Output Power (mW)			
Model	Specific Frequency used by team (MHz)			
Handshake or frequency hopping? (explain)				
Distance to closest e-match or altimeter (in)				
Description of shielding plan:				
-				

Transmitter #6				
Location of transmitter:				
Purpose of transmitter:				
Brand	RF Output Power (mW)			
Model	Specific Frequency used by team (MHz)			
Handshake or frequency hopping? (explain)				
Distance to closest e-match or altimeter (in)				
Description of shielding plan:				
<u> </u>				

Additional Comments	