Institution North Carolina State University

Milestone	FRR
-----------	-----

Vehicle Properties			
Total Length (in)	108.06		
Diameter (in)	6.17		
Gross Lift Off Weigh (lb)	47.5		
Airframe Material(s)	Fiberglass		
Fin Material and Thickness (in)	Aircraft Birch Ply/0.25		
Coupler Length(s)/Shoulder Length(s) (in)	11, 12 / 6.25		

Motor Properties		
Motor Brand/Designation	Aerotech L1520T-PS	
Max/Average Thrust (lb)	396.79/352.50	
Total Impulse (lbf-s)	835	
Mass Before/After Burn (lb)	47.5/43.5	
Liftoff Thrust (lb)	334.2	
Motor Retention Method	Retainer, Engine Mount, Centering rings	

Stability Analysis			
Center of Pressure (in. from nose)	78.76		
Center of Gravity (in. from nose)	59.25		
Static Stability Margin (on pad)	2.17		
Static Stability Margin (at rail exit)	2.21		
Thrust-to-Weight Ratio	7.42		
Rail Size/Type and Length (in)	1515/144		
Rail Exit Velocity (ft/s)	70.1		

Ascent Analysis		
Maximum Velocity (ft/s)	497	
Maximum Mach Number	0.45	
Maximum Acceleration (ft/s^2)	290	
Target Apogee (ft)	4420	
Predicted Apogee (From Sim.) (ft)	3775	

Recovery System Properties - Overall			
Total Descent Time (s) 79			
Total Drift in 20 mph winds (ft) 2303			

Recovery System Properties - Energetics			
Ejection System Energetics (ex. Black Powder)		Black Powder	
Energetics Mass - Drogue	Primary	2.3	
Chute (grams)	Backup	2.7	
Energetics Mass - Main Chute	Primary	5.5	
(grams)	Backup	6	
Energetics Mass - Other	Primary	N/A	
(grams) - If Applicable	Backup	N/A	

Payload Deployment			
Location: Air or Ground (if applicable) Ground			
Altitude of Deployment (if applicable)	N/A		

Recovery System Properties - Recovery Electronics			
Primary Altimeter Make	e/Model	PerfectFlite StratoLoggerCF	
Secondary Altimeter Mal	ke/Model	PerfectFlite StratoLoggerCF	
Other Altimeters (if app	olicable)	-	
Rocket Locator (Make/Model)		Eggfinder GPS Tracking System	
Additional Locators (if applicable)		-	
Transmitting Frequencies (all - vehicle and payload)		***Required by CDR*** (Complete on pages 3 and 4)	
Pad Stay Time (Launch Configuration)		3 hr	
Describe Redundancy Plan ' '		dent, dual redundant altimeters, with teries, switches, ematches, and black powder charges.	

Recovery System Properties - Drogue Parachute				
Manufacturer/Model		Fruity Chutes 24-inch Compact Elliptical		
Size	or Diameter (in	or ft)	24 in	
Main Altir	neter Deployme	ent Setting	Apogee	
Backup Alt	imeter Deploym	ent Setting	Apoge	ee + 1 second
Velocit	ty at Deploymen	it (ft/s)	0	
Ter	minal Velocity (f	t/s)	88	
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		5/8 in Tubular Kevlar		
Recovery Harness Length (ft)		40		
Harness/Airframe Interfaces		U-bolt with quick link		
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
(Ft-lbs)	bs) 2142.4 15		1468.4	

Recovery System Properties - Main Parachute				
Manufacturer/Model		Fruity Chutes 1	20 in Iris UltraCompact	
Size	or Diameter (in	or ft)		120 in
Main Altime	eter Deploymen	t Setting (ft)		500
Backup Altim	neter Deploymei	nt Setting (ft)		450
Velocit	ty at Deploymen	it (ft/s)		88
Ter	minal Velocity (f	t/s)	14.7	
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		5/8 in Tubular Kevlar		
Recovery Harness Length (ft)		40		
Harness/Airframe Interfaces			U-bolt with qu	ick link
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
(Ft-lbs)	-lbs) 60 42.4		41.1	

Institution North Carolina State University Milestone FRR

	Payload
	Overview
Payload 1 (official payload)	Once the payload team comes within 30 feet of the rocket, the payload integration lead will connect to a Bluetooth module within the electronics bay of the integration system through a smart phone. Once a connection has been established, the primary deployment motor and retenting motor will be controlled through an application that interfaces with microcontrollers, Blueterm. With Blueterm, the deployment and unlocking processes can be initiated. After the rover has been fully extended from the body tube, the rack gear locking mechanism will rotate and the rover will be free. The rover team lead will utilize a control to drive the rover to the nearest ice collection site. Once the rover is directly over the ice, the two servos attached to their respective scoop will engage, scooping a minimum sample of 10 mL of ice. Once the team has confirmed that the sample size is sufficient, the rover will then proceed to drive a minimum of 10 linear feet from the collection site, thus completing a sucessful collection mission.
	Overview
Payload 2 (non- scored payload)	N/A

	Test Plans, Status, and Results
Ejection Charge Tests	In order to ensure that the altimeters used for ejection charges onboard the rocket execute correctly, altimeters will be placed in a vacuum chamber and will be hooked up to an LED. If the LED illuminates at the correct pressure, then it will be deemed worthy for flight. Black powder ejection charge testing will take place to confirm calculations performed in the PDR. These calculations rely on a constant to find the ideal pressure for a certain separation force. Testing will start with the calculated amount of black powder loaded into a mock-up of each section that is weighted and connected appropriately. Further tests will be performed until the sections separate by the appropriate amount.
Sub-scale Test Flights	The subscale flight is scheduled for November 16, 2019. During this flight, the primary mission system designs will be validated and any failures will be accounted for in future documentation. The subscale payload will simply be a simulated weight in the payload bay. Upon landing of the subscale, a full-scale mock-up of the payload will simulate deployment in the location that the subscale lands. The launch vehicle will also test recovery systems and altimeter accuracy will be validated.
Vehicle Demon- stration Flights	The full-scale test flight will take place on February 22, 2020. This test flight will validate all launch vehicle systems and provide confidence in mission success prior to FRR. Launch vehicle recovery system timing and sizing will be confirmed and target apogee and altimeter accuracy will be tested. All systems performed as expected.
Payload Demon- stration Flights	The payload demonstration flight will take place with the full-scale vehicle demonstration flight on February 23, 2020. The flight has qualified as a sufficient payload demonstration flight. The BURRITO was fully retained.

Institution	North Carolina State University	Milestone	FRR

	Tra	ansmitter #1		
Location of transmitter:	Within the electronics housing of the payload integration system.			
Purpose of transmitter:	Transmits to the SLI team that the rocket has landed, asking for team confirmation before initiating deployment sequence			
Brand	Olinex LTD.	RF Output Power (mW)	3.98 mW	
Model	HC-06	Specific Frequency used by team (MHz)	2400 MHz	
Handshake or frequency hopping? (explain)	operates on a 2400MHz spread spectrum			
Distance to closest e-match or altimeter (in)	38 in			
Description of shielding plan:	The transmitter will be placed inside of an 3D printed PLA electronics housing lined with foam			

Transmitter #2				
Location of transmitter:	Inside of nose cone, forward of nosecone bulkhead.			
Purpose of transmitter:	Transmits location data to the field recovery team during the descent and recovery of the launch vehicle			
Brand	Eggtimer Rocketry	RF Output Power (mW)	100mW	
Model	Eggfinder GPS Tracking System	Specific Frequency used by team (MHz)	913MHz	
Handshake or frequency hopping? (explain)	Fixed Frequency, ID 3.			
Distance to closest e-match or altimeter (in)	60			
Description of shielding plan:	Multiple bulkheads, centering rings, and payload components are located between the transmitter and recovery electronics			

Transmitter #3			
Location of transmitter:			
Purpose of transmitter:			
Brand	RF Output Power (mW)		
Model	Specific Frequency used by team (MHz)		
Handshake or frequency hopping? (explain)			
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			

Transmitter #4			
Location of transmitter:			
Purpose of transmitter:			
Brand	RF Output Power (mW)		
Model	Specific Frequency used by team (MHz)		
Handshake or frequency hopping? (explain)			
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			

nstitution	North Carolina State University	Milestone	FRR
		Transmitter #5	
Location of tra	nsmitter:		
Purpose of tra	nsmitter:		
Brand	d	RF Output Power (mW)	
Mode	el	Specific Frequency used by team (MHz)	
landshake or frequency	hopping? (explain)		
Distance to closest e-ma	tch or altimeter (in)		
Description of sh	ielding plan:		
		Transmitter #6	
Location of tra	nsmitter:		
Purpose of tra	nsmitter:		
Brand	d	RF Output Power (mW)	
Mode	el	Specific Frequency used by team (MHz)	
landshake or frequency	hopping? (explain)	-	
Distance to closest e-ma	tch or altimeter (in)		
Description of sh	ielding plan:		
	Ado	ditional Comments	