Institution North Carolina State University

Vehicle Properties		
Total Length (in)	107.5	
Diameter (in)	6.17	
Gross Lift Off Weigh (lb)	44.43	
Airframe Material(s)	Fiberglass	
Fin Material and Thickness (in)	Aircraft Birch Ply/0.25	
Coupler Length(s)/Shoulder Length(s) (in)	11, 12 / 3	

Motor Properties		
Motor Brand/Designation	Aerotech L1520T-PS	
Max/Average Thrust (lb)	396.79/352.50	
Total Impulse (lbf-s)	835.39	
Mass Before/After Burn (lb)	44.43/36.44	
Liftoff Thrust (lb)	334.2	
Motor Retention Method	Retainer, Engine Mount, Centering rings	

Stability Analysis		
Center of Pressure (in. from nose)	78.38	
Center of Gravity (in. from nose)	64.97	
Static Stability Margin (on pad)	2.19	
Static Stability Margin (at rail exit)	2.44	
Thrust-to-Weight Ratio	7.88	
Rail Size/Type and Length (in)	1515/144	
Rail Exit Velocity (ft/s)	73.48	

Ascent Analysis		
Maximum Velocity (ft/s)	562	
Maximum Mach Number	0.49	
Maximum Acceleration (ft/s^2)	284.1	
Target Apogee (ft)	4420	
Predicted Apogee (From Sim.) (ft) 4425		

Recovery System Properties - Overall	
Total Descent Time (s)	83.6
Total Drift in 20 mph winds (ft)	2452

Recovery System Properties - Energetics			
Ejection System Energetics (ex	. Black Powder)	Black Powder	
Energetics Mass - Drogue	Primary	0.5	
Chute (grams)	Backup	0.7	
Energetics Mass - Main Chute	Primary	2.9	
(grams)	Backup	3.1	
Energetics Mass - Other	Primary	N/A	
(grams) - If Applicable	Backup	N/A	

Milestone PDR

Payload Deployment		
Location: Air or Ground (if applicable)	Ground	
Altitude of Deployment (if applicable)	N/A	

Recovery Syste	m Propertie	es - Recovery Electronics
Primary Altimeter Make,	/Model	PerfectFlite StratoLoggerCF
Secondary Altimeter Mak	e/Model	PerfectFlite StratoLoggerCF
Other Altimeters (if applicable)		-
Rocket Locator (Make/Model)		QRP Labs LightAPRS
Additional Locators (if applicable)		-
Transmitting Frequencies (all - vehicle and payload)		***Required by CDR*** (Complete on pages 3 and 4)
Pad Stay Time (Launch Con	figuration)	2.9 hr
Describe Redundancy Plan (batteries, switches, etc.)	Fully independent, dual redundant altimeters, witi sepearate batteries, switches, ematches, and blac powder charges.	

R	Recovery System Properties - Drogue Parachute			
Ma	nufacturer/Mod	el	Fruity Chutes 24-inch Compact Elliptical	
Size o	r Diameter (in o	r ft)		24 in
Main Altim	eter Deploymer	nt Setting	Apogee	
Backup Altir	meter Deployme	ent Setting	А	pogee + 1 second
Velocity	y at Deployment	: (ft/s)		0
Terminal Velocity (ft/s)		85.6		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		5/8 in Tubular Kevlar		
Recovery Harness Length (ft)		40		
Harness/Airframe Interfaces		U-bolt wit	th quick link	
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
(Ft-lbs)	1989.6	1315.5	1315.5 1082.9	

Recovery System Properties - Main Parachute				
Ma	nufacturer/Mod	lel	Fruity Chutes 120 in Iris UltraCompact	
Size o	or Diameter (in c	or ft)		120 in
Main Altime	ter Deployment	Setting (ft)	500	
Backup Altim	eter Deploymen	t Setting (ft)		450
Velocit	y at Deployment	t (ft/s)		85.6
Terminal Velocity (ft/s)		14		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		5/8 in Tubular Kevlar		
Recovery Harness Length (ft)		40		
Harness/Airframe Interfaces		U-bolt wit	th quick link	
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
(Ft-lbs)	53.1	35.1	.1 28.9	

Institution	North Carolina State University Milestone PDR
	Payload Payload
	Overview
Payload 1 (official payload)	Once the payload integration systems sensors detect the rocket has landed, the RF transceiver within the payload bay will ask the SLI team for deployment confirmation. Post confirmation, the deployment motor will engage and the rover will be pushed out of the payload bay. After the rover has been fully extended from the body tube, the rack gear locking mechanism will rotate and the rover will be free. The rover team lead will utilize a control to drive the rover to the nearest ice collection site. Once the rover is directly over the ice, the two servos attached to their respective scoop will engage, scooping a minimum sample of 10 mL of ice. Once the team has confirmed that the sample size is sufficient, the rover will then proceed to drive a minimum of 10 linear feet from the collection site, thus completing a successful collection mission.
	Overview
Payload 2 (non- scored payload)	N/A

	Test Plans, Status, and Results
Ejection Charge Tests	In order to ensure that the altimeters used for ejection charges onboard the rocket execute correctly, altimeters will be placed in a vacuum chamber and will be hooked up to an LED. If the LED illuminates at the correct pressure, then it will be deemed worthy for flight. Black powder ejection charge testing will take place to confirm calculations performed in the PDR. These calculations rely on a constant to find the ideal pressure for a certain separation force. Testing will start with the calculated amount of black powder loaded into a mock-up of each section that is weighted and connected appropriately. Further tests will be performed until the sections separate by the appropriate amount.
Sub-scale Test Flights	The subscale flight is scheduled for November 16, 2019. During this flight, the primary mission system designs will be validated and any failures will be accounted for in future documentation. The subscale payload will simply be a simulated weight in the payload bay. Upon landing of the subscale, a full-scale mock-up of the payload will simulate deployment in the location that the subscale lands. The launch vehicle will also test recovery systems and altimeter accuracy will be validated.
Vehicle Demon- stration Flights	The full-scale test flight will take place on February 22, 2020. This test flight will validate all launch vehicle systems and provide confidence in mission success prior to FRR. Launch vehicle recovery system timing and sizing will be confirmed and target apogee and altimeter accuracy will be tested.
Payload Demon- stration Flights	The payload demonstration flight will take place with the full-scale vehicle demonstration flight on February 22, 2019. A secondary launch date in March can be arranged if necessary. The payload will be deployed upon landing of the full-scale vehicle and the UAV mission will be tested and completed.

Institution	North Carolina State University	Milestone	PDR

	Trans	smitter #1		
Location of transmitter:	Within the electronics housing of the payload integration system.			
Purpose of transmitter:	Transmits to the SLI team that the rocket has landed, asking for team confirmation before initiating deployment sequence			
Brand	LoRa	RF Output Power (mW)	100mW	
Model	SX1262	Specific Frequency used by team (MHz)	433MHz	
Handshake or frequency hopping? (explain)	operates on a 433MHz spread spectrum			
Distance to closest e-match or altimeter (in)	29.51 in			
Description of shielding plan:	The transmitter will be placed inside of an 3D printed ABS electronics housing lined with foam			

Transmitter #2				
Location of transmitter:	Location of transmitter:			
Purpose of transmitter:				
Brand		RF Output Power (mW)		
Model		Specific Frequency used by team (MHz)		
Handshake or frequency hopping? (explain)				
Distance to closest e-match or altimeter (in)				
Description of shielding plan:				

Transmitter #3			
Location of transmitter:			
Purpose of transmitter:			
Brand		RF Output Power (mW)	
Model		Specific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain)			
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			

Transmitter #4			
Location of transmitter:			
Purpose of transmitter:			
Brand	RF Output Power (mW)		
Model	Specific Frequency used by team (MHz)		
Handshake or frequency hopping? (explain)			
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			

	Willestone Re	eview riysheet 2019-2020	
	North Carolina State University		PDR
nstitution	North Carolina State University	Milestone	אטא
		Transmitter #5	
Location of	f transmitter:		
Purpose of	f transmitter:		
В	Brand	RF Output Power (mW)
N	/lodel	Specific Frequency used by tea	m (MHz)
landshake or freque	ency hopping? (explain)		
istance to closest e	e-match or altimeter (in)		
Description o	of shielding plan:		
		Transmitter #6	
	f transmitter:		
	f transmitter:		
	Brand 4-d-l	RF Output Power (mW)	
	Model ency hopping? (explain)	Specific Frequency used by tea	III (IVID2)
	e-match or altimeter (in)		
Description (of shielding plan:		
	A	dditional Comments	
	A.	darional comments	