Milestone Review Flysheet

Institution North Carolina State University

Milestone Preliminary Design Review

Vehicle Properties		
Total Length (in)	113	
Diameter (in)	6.2	
Gross Lift Off Weigh (lb)	46.2	
Airframe Material	Fiberglass	
Fin Material	Aircraft-Grade Birch Plywood	
Coupler Length	8 in	

Motor Properties		
Motor Designation	L1120W	
Max/Average Thrust (lb)	349.57 / 220.91	
Total Impulse (lbf-s)	1106.51	
Mass Before/After Burn	10.27 lbs / 4.19 lbs	
Liftoff Thrust (lb)	1375	
Motor Retention	Retainer, engine mount, centering ring	

Stability Analysis		
Center of Pressure (in from nose)	84.8	
Center of Gravity (in from nose)	71.7	
Static Stability Margin	2.12	
Static Stability Margin (off launch rail)	2.1	
Thrust-to-Weight Ratio	7.6	
Rail Size and Length (in)	1.5 x 1.5 x 144	
Rail Exit Velocity	59.2 fps	

Ascent Analysis			
Maximum Veloxity (ft/s)	604		
Maximum Mach Number	0.54		
Maximum Acceleration (ft/s^2)	217		
Target Apogee (From Simulations)	5455 ft		
Stable Velocity (ft/s)	59.2		
Distance to Stable Velocity (ft)	9.83		

Recovery System Properties					
	Dogue Parachute				
Manufacti	urer/Model	Fruit	ty Chutes / Iris Ultra		
Si	ze		2 ft (dia)		
Altitu	de at Deployme	ent (ft)	52	5280	
Veloci	ty at Deployme	nt (ft/s)	()	
Terminal Velocity (ft/s)			90		
Recovery Harness Material			Kevlar		
Harness Size/Thickness (in)			0.5		
Recovery Harness Length		ngth (ft) 25		5	
Harness/Airframe Interfaces		U-	bolt with quick l	ink	
Kinetic	Section 1	Section 2	Section 3	Section 4	
Energy of Each Section (Ft-lbs)	2457	2476			

Recovery System Properties				
	Main Parachute			
Manufactu	rer/Model	Fru	ity Chutes / Iris Ultra	
Siz	е		15 ft (dia)	
Altitud	e at Deploym	nent (ft)	700	
Velocity	at Deploym	ent (ft/s)		90
Terminal Velocity (ft/s)			8.5	
Recovery Harness Material			Kevlar	
Harness Size/Thickness (in)			0.5	
Recovery Harness Length (ft)			16	
Harness/Airframe Interfaces Black powo		Black powder	der charge and u-bolt with quick link	
Kinetic Enerfy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft- lbs)	4	18	22	

Recovery Electonics		
Altimeter(s)/Timer(s) (Make/Model)	Stratologger SL100, Entacore AIM 3.0	
Redundancy Plan	Redundant charge fired 1 second after apogee	
Pad Stay Time (Launch Configuration)	1 hour	

Recovery Electonics		
Rocket Locators (Make/Model)	BigRedBee 900 MHz GPS	
Transmitting Frequencies	***Required by CDR***	
Black Powder Mass Drogue Chute (grams)	2.0	
Black Powder Mass Main Chute (grams)	2.5	

Milestone Review Flysheet

Milestone

Preliminary Design Review

	Autonomous Ground Support Equipment (MAV Teams Only)
	Overview
Capture Mechanism	N/A
	Overview
Container Mechanism	N/A
	Overview
Launch Rail Mechanism	***Include Description of rail locking mechanism***
	Overview
Igniter Installation Mechanism	N/A

Payload			
	Overview		
Payload 1	After payload deployment, the Upright Landing System (ULS) will automatically deploy from its stowed position. Two completely redundant target differentiation systems (TDS) on the payload, one run with a Raspberry Pi and the other with a BeagleBone Black, will control all autonomous tasking for the (collective) on-board target differentiation system. Each computer will control a camera used to take images of the targets and will process the images to identify and differentiate between the targets. The two systems managed by the microcontrollers are completely redundant and as such will perform all task simultaneously. The payload recovery system will manage the descent velocity of the payload and the ULS will absorb the shock from ground contact and ensure a stable and upright landing of the payload.		
Payload 2	Overview		
i ayibad 2	N/A		

	Test Plans, Status, and Results				
Ejection Charge Tests	vacuum chamber and will be hooked up to an LED. If the LED illuminates at the correct pressure, then it will be deemed worthy for flight. The same test will be run on the altimeters that will be used for the air brake system. Black powder ejection charge testing will take place to confirm calculations performed in §3.2 of the PDR. These calculations rely on a constant to find the ideal pressure for a certain separation force. Testing will start with the calculated amount of black powder loaded into a mock-up of each section that is weighted and connected appropriately. Further tests will be performed until the sections separate by the appropriate amount				
Sub-scale Test Flights	The subscale test flight is scheduled for December 17-18, 2016. During this test, the primary mission system designs will be validated and any failures will be accounted for in future documentation. The subscale payload will not incorporate redundant target recognition subsystems. The launch vehicle will test in-flight payload deployment and validate recovery systems for launch vehicle and payload. Altimeter accuracy will also be validated during these tests.				
Full-scale Test Flights	The full-scale test flight will take place in February, 2017 (specific date is unknown at this time). This test will validate all launch vehicle and payload systems and provide complete confidence in mission success prior to FRR. Paylaod will implement fully redundant target recognition subsystems and full-scale recovery devices. Payload deployment (that was validated during subscale) will be tested for complete success. Launch vehicle recovery system timing and sizing will be confirmed. Target apogee and altimeter accuracy will be tested and necessary weight adjustments will be made in the weeks preceeding FRR.				

Milestone Review Flysheet

Institution North Carolina State University

Milestone

Preliminary Design Review

Additional Comments