Milestone Review Flysheet 2017-2018

Institution North Carolina State University

Milestone	PDR

Vehicle Properties		
Total Length (in)	125	
Diameter (in)	7.5	
Gross Lift Off Weigh (lb.)	47	
Airframe Material(s)	Blue Tube body, fiberglass nosecone	
Fin Material and Thickness (in)	Aircraft Grade Birch Plywood 1/4 in.	
Coupler Length/Shoulder Length(s) (in)	12 in. / 6 in.	

Stability Analysis		
Center of Pressure (in from nose)	92.2	
Center of Gravity (in from nose)	76.9	
Static Stability Margin (on pad)	2.03	
Static Stability Margin (at rail exit)	2.075	
Thrust-to-Weight Ratio	14.83	
Rail Size/Type and Length (in)	1.5 x 1.5 x 96 aluminum rail	
Rail Exit Velocity (ft/s)	59.5	

Recovery System Properties					
	Drogue Parachute				
М	lanufacturer/Mo	del	Fruity Chute /	Classic Elliptical	
Siz	e/Diameter (in o	r ft)		36	
Altitu	ude at Deployme	ent (ft)	Apogee (Apogee (5280 ft AGL)	
Veloc	ity at Deploymer	nt (ft/s)		0	
Te	rminal Velocity (ft/s)	5	8.43	
Reco	very Harness Ma	aterial	Kevlar		
Recovery Harness Size/Thickness (in)		ickness (in)	0.5		
Recovery Harness Length (ft		gth (ft)		40	
Harness/Airframe Interfaces		U	J-bolt with quick	link	
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft- lbs)	407.87	798.74	900.71		

Recovery Electronics		
Altimeter(s)/Timer(s) (Make/Model)	StratoLoggerCF PerfectFlite	
Redundancy Plan and Backup Deployment Settings	Entacore AIM USB 3.0	
Pad Stay Time (Launch Configuration)	1 hr	

Motor Properties		
Motor Brand/Designation	AeroTech L2200G-PS	
Max/Average Thrust (lb.)	697.29 / 504.25	
Total Impulse (lbf-s)	1147.42	
Mass Before/After Burn (lb.)	10.54 / 4.99	
Liftoff Thrust (lb.)	504.25	
Motor Retention Method	Retainer, Engine Mount, Centering ring	

Ascent Analysis		
Maximum Velocity (ft/s)	716	
Maximum Mach Number	0.64	
Maximum Acceleration (ft/s^2)	466	
Predicted Apogee (From Sim.) (ft)	5573	

Recovery System Properties				
	Main Parachute			
Ma	nufacturer/Mo	del	Fruity Chute / Iris Ultra Compact	
Size	/Diameter (in c	or ft)	120 in.	
Altitu	de at Deployme	ent (ft)	10	00
Velocit	y at Deploymer	nt (ft/s)	58	.43
Teri	minal Velocity (ft/s)	14.41	
Recovery Harness Material		Kevlar		
Recovery Harness Size/Thickness (in)		0.5		
Recovery Harness Length (ft)		40		
Harness/Airframe Interfaces		Black powder charge and u-bolt with quick link		olt with quick
Kinetic Energy	Scotlon 1		Section 3	Section 4
of Each Section (Ft- lbs)	24.92	48.79	55.03	

Recovery Electronics		
Rocket Locators (Make/Model)	BigRedBee/ BRB 900 MHz GPS	
Transmitting Frequencies (all vehicle and payload)	900 MHz - Required for CDR	
Ejection System Energetic Powder)	s (ex. Black	Goex 4F Black Powder
Energetics Mass - Drogue Chute (grams)	Primary	5.6
	Backup	5.6
Energetics Mass - Main Chute	Primary	6.6
(grams)	Backup	6.6
Energetics Masses - Other	Primary	N/A
(grams) - If Applicable	Backup	N/A

Milestone Review Flysheet 2017-2018

Institution	North Carolina State University	Milesto	one PDR

	Payload			
	Overview			
Payload 1 (official payload)	The payload is a custom designed rover which is to deploy from the internal structure of the launch vehicle upon remote triggering. During flight, it is housed in the payload tube which is rotating about a Lazy Susan bearing system. Upon landing, the payload tube self-rights, and the electric latch keeping the rover in the tube is unlocked. At the same time, the rover exits the payload tube is to autonomously drive 5 ft in any direction and deploy foldable solar cell panels upon reaching the final resting point. The solar panels will be deployed using a rotating arm with folded panels attached. As the arm rotates, the panels unfurl.			
	Overview			
Payload 2 (non-scored payload)	N/A			

	Test Plans, Status, and Results				
Ejection Charge Tests	In order to ensure that the altimeters used for ejection charges onboard the rocket execute correctly, altimeters will be placed in a vacuum chamber and will be hooked up to an LED. If the LED illuminates at the correct pressure, then it will be deemed worthy for flight. Black powder ejection charge testing will take place to confirm calculations performed in the PDR. These calculations rely on a constant to find the ideal pressure for a certain separation force. Testing will start with the calculated amount of black powder loaded into a mock-up of each section that is weighted and connected appropriately. Further tests will be performed until the sections separate by the appropriate amount.				
Sub-scale Test Flights	The subscale test flight is scheduled for November 18-19 2018. During this test, the primary mission system designs will be validated and any failures will be accounted for in future documentation. The subscale payload will not incorporate a rover but will include a payload experiment that will incorporate an altimeter and a spinning orientation sensor to measure the roll rate and effect of a rotating payload on the orientation and launch behavior of the rocket. The launch vehicle will also test recovery systems for launch vehicle. Altimeter accuracy will also be validated during these tests.				
Full-scale Test Flights	The full-scale test flight will take place in February, 2018 (specific date is unknown at this time). This test will validate all launch vehicle and payload systems and provide complete confidence in mission success prior to FRR. Payload will implement deployable rover and rover mission will be tested and completed Launch vehicle recovery system timing and sizing will be confirmed. Target apogee and altimeter accuracy will be tested and necessary weight adjustments will be made in the weeks preceeding FRR.				

Milestone Review Flysheet 2017-2018

Institution	North Carolina State University	Milestone	PDR
Additional Comments			